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Abstract

Non-invasive electrocardiographic imaging (ECGI) is
a technique used to reconstruct the electrical activity on
the epicardial surface using measurements recorded from
body-surface electrodes. A typical workflow requires heart
and torso geometry from tomographic data, along with 3D
electrode locations. This is not part of the routine arrhyth-
mia workflow, and further acquisition burdens the patient.
Our aim is to construct an accurate 3D torso model of a
patient using a 3D camera, with the intent of eliminating
the need for additional scanning. We compare against re-
sults obtained when using traditional imaging.

1. Introduction

Noninvasive electrocardiographic (ECG) imaging is a
computational technique which reconstructs electrical ac-
tivity on an individual’s heart from the corresponding
body-surface ECG data. It has the potential to image a
variety of cardiac rhythm disorders such as premature ven-
tricular contractions [1] and reentrant ventricular tachycar-
dia [2].

A typical ECG-imaging workflow requires tomographic
imaging to obtain the patient-specific heart and thorax ge-
ometry, from which the forward operator linking cardiac
electrical activity and body-surface ECG measurements
can be established. This often requires non-standard tho-
rax imaging of a subject wearing a high-density electrode
array such that these surface electrodes can be identified in
the images. However, thorax imaging is outside the rou-
tine clinical workflow for arrhythmia patients, and poses a
challenge to widespread adoption of ECG-imaging due to
the logistical and financial burdens placed on the patient
and hospital staff.

Image-less ECG-imaging proposes to circumvent the
thorax imaging by using a low-cost 3D-camera to ob-
tain the surface electrode positions [3]. However, exist-
ing image-less systems are designed for simplified ECG-
imaging, which use the standard 12-lead ECG configura-
tion and may not be able to image more complex arrhyth-
mias due to its sparsity. In addition, none of these systems

address how to align the camera-generated electrode posi-
tions to the heart geometry, which literature has shown to
be critically important to the accuracy of ECG-imaging.

We present a modified ECG-imaging workflow that con-
structs the torso model using a color and depth (RGBD)
camera instead of MRI/CT-based thorax imaging. It in-
cludes 1) a sensing system in which an RGBD camera
records video of a patient wearing ECG electrode strips 2)
electrode localization which generates the 3D torso model
from 2D electrode positions in the video 3) heart-torso
registration during which the camera-generated torso is
aligned to the scan-generated heart geometry and 4) body-
surface deformation in which the aligned torso is de-
formed to be close to the skin surface. The resulting torso
is viable for full ECG-imaging, significantly reducing the
cost and complexity of the existing ECG-imaging work-
flow without sacrificing accuracy.

2. Methodology

Construction of 3D Torso Model: The camera setup
consists of an RGBD sensor mounted on a tripod. To cap-
ture the data, the patient stands with his entire body facing
the camera, and then rotates in place for a full revolution.
Registered color and depth video is captured while the pa-
tient rotates and is stored for processing.

The first step in constructing the 3D torso is to identify
the 2D positions of each electrode in every frame of the
registered RGBD video. Using the optical properties of
the 3D camera, we generate an electrode point cloud Pi

from the identified electrodes for each frame i of the N
frames of video. Our goal in this step is, for all i, to find
the optimal 3D rigid transformations R∗

i that align each Pi

to a chosen reference coordinate system. Since the patient
directly faces the camera at the start of the acquisition, we
choose the world coordinate system of frame 0 as the ref-
erence coordinate system. Once all the R∗

i are found, the
separate point clouds Pi can be aligned to the reference
frame and combined to generate the full 3D torso model.

We perform an optimization via pose graph to find the
transformations [4]. We construct the pose graph using the
point clouds Pi as the nodes, and the pairwise rigid trans-
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Figure 1: Pipeline Overview. In the first step, the patient wears a high-density array of ECG electrodes and rotates in front
of the 3D camera to acquire data. The torso model is then constructed in the camera coordinate system using the video
data. Third, the torso and heart are aligned using anatomical landmarks. Finally, the torso is deformed to the skin surface,
after which it is ready for use with ECG imaging.

forms Ri,i−1 from the point clouds i to i−1 as the directed
edges. P0 is chosen as the reference point cloud. For each
of the remaining point clouds, we calculate the pairwise
transformation Ri,i−1 between point clouds Pi and Pi−1,
then add the node Pi and the directed edge Ri,i−1 to the
graph. We also estimate the global transform Ri by accu-
mulating the pairwise transformations that were estimated
up to node i, as shown in Equation 1.

Ri =

i∏
j=1

Rj,j−1 (1)

Finally, we add an additional edge between P0 and
PN−1 to generate a circular pose graph. The objec-
tive function that we aim to minimize describes the cost
of aligning point clouds created from consecutive video
frames:

E(R,K) =
∑
i

∑
(p,q)∈Kij

||Rip −Ri−1q||2 (2)

where R is the set of global transformations Ri of point
clouds Pi to the reference frame, and K is a set of sets,
in which each element Kij is a set containing the 3D
point correspondences between two point clouds Pi and
Pj . A least-squares optimization is performed to minimize
E(R,K) and find all the Ri,i−1 which reduce the corre-
spondence error between electrodes of the same index in
the reference frame. Once all electrode point clouds are
transformed to the reference frame, they are combined to
generate the camera-based torso model.

Heart-Torso Registration: In order to perform ECG
imaging, the torso model must be aligned to the patient-
specific heart model, which we derive from cardiac scans.
We align the camera and scan coordinate systems by es-
timating a rigid-body transformation between a set of

anatomical landmarks observed in both coordinate sys-
tems. We choose the landmark set based on the members’
proximity to the heart and their ability to constrain the ori-
entation of the final transformation. The set consists of
1) centroids of Spine Vertebrae T1-T9 2) the Sternum Tip
(point where the sternum ends in the center of the chest)
and 3) the Left and Right Lung Tops (the highest points in
each lung) for a total of 12 landmarks. We utilize a deep
learning-based detector introduced in [5], which predicts
the 3D location of internal anatomical landmarks from a
2D depth image of a patient, to get the camera coordinate
system’s landmarks. The corresponding landmarks are an-
notated in the scan data. Once the 3D positions of both sets
of landmarks are identified, we compute the rigid transfor-
mation between the two point sets by employing the Pro-
crustes Method [6]. The ensuing transformation can then
be applied to align the torso model to the scan data.

Deformation to Skin Surface: After aligning the
camera-based torso model to the scan data, we deform it to
be close to the skin surface (as shown in the scan data) in
order to account for deformations in the body shape when
moving between the two data acquisitions. We iteratively
move the electrodes close to the skin while preserving the
general form of the torso by minimizing an energy func-
tional, inspired by [7], that combines features of the scan
data and the torso’s shape. The full energy formulation is:

Eelectrodes = −1

2
||Gσ(x, y) ∗ ∇I(x, y)||2

− 1

2
||Gσ(y, z) ∗ ∇I(y, z)||2

+

p−1∑
i=0

n−1∑
j=0

(KD[i, j]−KR[i, j])
2

(3)

where Gσ(x, y) and Gσ(y, z) are Gaussian kernels pa-
rameterized by variance σ for the axial and sagittal views
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Figure 2: The camera-generated torso model, heart model, and scan data all aligned in the scan coordinate system. Axial,
sagittal, and coronal views are shown.

respectively, ∇I(x, y) and ∇I(y, z) are the image gradi-
ents for the axial and sagittal planes, and ∗ is the convo-
lution operator. p is the total number of electrodes and
n is the number of neighboring electrodes in the space
surrounding each central electrode. Finally, KR and KD

are [p,n] matrices containing the distances of node i to its
neighbors in 3D space.

The external energy, summarized by the first two terms,
calculates the sum of the lead energies when they are or-
thographically projected onto the two Gaussian-smoothed
image gradients. The skin surface in the image gradient is
prominent due to the large difference between the anatomy
and the background in the original image, so the minimizer
draws the electrodes toward that feature. The internal en-
ergy, characterized by the last term, measures the inter-
electrode ground truth distances before and after deforma-
tion and ensures that the torso shape is not unrealistically
deformed.

The coordinate axes here are the left-right, back-front,
and feet-head axes. We choose to model the deformation
using a full similarity transform M , parameterized by three
rotations ρ, ϕ and θ, three translations tx, ty , and tz , and
three scale parameters sx, sy , sz . The optimal deformation
transform is found by minimizing Eelectrodes(M(P)) us-
ing genetic algorithms, where P is the aligned torso model.
After deforming the torso with the optimal transform, the
electrodes are sufficiently close to the skin that ECG imag-
ing can be performed.

3. Experiments and Results

We evaluate the accuracy of the camera-generated torso
against the torso derived from thorax scans of five patients.
We compute the Euclidean distances between correspond-
ing electrodes in the camera and scan data, and plot the
distribution of the localization errors for all patients in Fig-
ure 3. Four out of the five patients have mean errors of 50
millimeters or lower, which is the distance between con-
secutive electrodes on the same strip. This indicates that
torsos generated through the camera-based method can ex-
pect to have approximately 1 electrode distance worth of

error compared a scan-generated torso.

Figure 3: Correspondence Error Distribution

In latitudinal analysis, we analyze the correspondence
error of electrodes using their location along the circum-
ference of the patient’s body. We group the electrode strips
by the body region of that they are applied on, with the
first region starting under the patient’s right arm, and the
remaining regions defined counter-clockwise along the pa-
tient’s circumference. Table 1 shows the grouping and the
average inter-lead distance error for each group. Areas
where the ribs are more prominent, such as the front of
the chest, have high rigidity and prevent the strips from
deforming. The softer areas on the side and center of the
torso allow for shape variation, which increases the elec-
trode correspondence error. This is reflected in the data,
which shows the Front Middle group having the least er-
ror, and the softer areas of the Back Right, Front Right and
Back Left having the most error.

We also conducted a longitudinal analysis to observe
how the electrode correspondence error varies from the
top of the lead strip to the bottom. We align all strips
using their respective bottom electrodes, and assign intra-
strip electrode indexes in descending order from the bot-
tom electrode to the top. For each strip in a group, we

Page 3



Body Region Electrode Strips Avg. Error (mm)
Front Right 1,2,3 5.479

Front Middle 4,5,6,7,8 3.612
Front Left 9,10,11 4.004
Back Left 12,13,14 5.308

Back Middle 15,16,17 5.082
Back Right 18 6.643

Table 1: Electrode strip assignment and average latitudinal
error.

calculate the correspondence error against the ground truth
and average the value across leads with the same intra-strip
index. Figure 4 shows curves of the average correspon-
dence error in each group when the strips are traversed
from top to bottom. All the curves have convexities that
indicate minima near the center of the strip, which is the
section of the strip closest to the heart. Since positional
accuracy of the electrodes is crucial to the success of the
procedure, having a minimum of error near the heart is a
promising indication that the computed signals will be re-
liable. Errors occurring away from the central region are
tolerable since those electrodes have a smaller contribution
to the signal.

Figure 4: Longitudinal error variation of each strip group.

4. Conclusion

In our work, we presented a novel way to construct the
torso geometry of a patient in preparation for an ECG
imaging pipeline through the use of a 3D camera, and a
way to register that torso to the heart geometry derived
from the scan data. We showed that the electrode local-
ization error is within an average range of 50 millimeters,
which is less than the inter-lead distance. Latitudinal and
longitudinal analyses show that the torso error is minimal

in the region around the heart, indicating that the camera-
generated torso can be a viable substitute to one generated
from an additional thorax scan.
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